登录|注册

120健康网为你提供专家咨询服务,从找到专家到得到答案只需60秒
离线
李清初 肾病内科  | 主任医师

  • 8接受咨询
  • 0点评用户
  • 0.00综合评分
文章列表 > 文章详情

足细胞与膜性肾病

发布时间:2011-12-09 22:17:42  462人已访问

<span style="line-height: 150%; letter-spacing: 2pt; font-family: 黑体; font-size: 18pt; mso-bidi-font-size: 12.0pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";"> 

 

<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">膜性肾病是以肾小球基底膜上皮细胞下弥漫性的免疫复合物沉着伴基底膜弥漫增厚为特点,对本病的发病机制的了解主要是基于动物实验,对海曼肾炎动物模型这种类似人类膜性肾病的动物模型的研究。在这种模型中,免疫复合物在上皮下形成导致补体途径活化进而使C5b-9<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">膜攻击复合物形成,最终导致了补体介导的足细胞损伤。

<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">足细胞是肾小球三种主要肾小球细胞之一,维持正常肾小球功能和结构需要三种肾小球细胞之间的有效相互作用,任何一方的缺损均有可能导致肾小球肾炎的发生。足细胞是一种形态结构独特的细胞,具有多种功能,足细胞同时是一种高度分化的细胞,分裂增殖能力有限,因此一旦损伤丧失,就很难再生,近年来,大量研究提示足细胞损伤与缺失可能是导致肾小球肾炎的一个中心环节,现就近年来有关足细胞损伤与膜性肾病的有关研究综述如下:

<span style="line-height: 150%; font-family: 黑体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">一、补体介导的足细胞损伤

1<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">、抗原:引起膜性肾病免疫复合物沉积的抗原特性与来源尚未完全明了,实际上好像许多不同的抗原—抗体结合物均可引起膜性肾病,这些致肾炎抗原可以是内源性的(肾小球本身),也可以是外源性的,外源性抗原部分可以是循环免疫复合物沉积于上皮下区,或可作为游离抗原与其抗体结合形成原位免疫复合物种植于上皮下区,而在人类膜性肾病尚无确切的证据表明抗原是肾小球本身的[1]<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">。

2<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">、补体:大部分补体由肝脏合成,但约10%<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">的补体可由肾脏局部合成,人类肾脏局部合成补体成分是人类肾固有的特征,肾小管、系膜细胞、内皮细胞、足细胞能分泌不同种类的补体成分,在不同条件下参与肾损伤,在肾炎的早期,肾小球足细胞可表达C3<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">、C4<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">增加,在PHN<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">模型大鼠、肾小球损伤伴随着肾小球C3<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">、C4<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">,转录水平的高表达,这主要发生在足细胞上。肾脏局部合成补体有助于肾脏清除沉积于自身的补体成分[2]<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">。但具体机制尚未明了,需作进一步研究。

3<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">、补体活化及足细胞损伤

<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">补体活化可以通过经典途径或旁路途径,这一途径的中心点是C3<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">和C5<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">的裂解,它们裂解产生C3a<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">和C5a<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">最终形成C5b-9<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">复合物。在活体或体外研究都已说明了补体活化在补体介导的足细胞损伤是关键步骤,足细胞上的补体活化导致足细胞损伤和蛋白尿,完全耗尽补体,能抑制蛋白尿,强烈提示补体活化在PHN<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">中起重要作用[3]<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">。在PHN<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">补体介导的足细胞亚致死性损伤TO<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">·pham<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">发现足细胞肌动蛋白细胞骨架上的肌动蛋白张力纤维和局灶联结蛋白消失,但保留着基质相关整合素,但这种损伤在18<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">小时后完全恢复,这说明这种补体介导的损伤是可逆的[4]<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">,足细胞对抗体—补体结合物介导的损伤的反应是发生细胞溶解、凋亡,或暴露于大量溶解型C5b-9<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">时足细胞活化[5]<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">,研究体外培养的大鼠足细胞,或有丝分裂后期的足细胞暴露于抗体和补体源下,诱导了溶解性C5b-9<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">介导的损伤,同时研究了PHN<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">大鼠慢型,他们发现无论在体内还是体外试验,溶解型C5b-9<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">诱导足细胞损伤是导致DNA<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">损伤,这也可解释为什么足细胞在免疫介导的损伤时细胞增生受限。

<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">足细胞活化后可使生长因子合成蛋白酶、氯化物及其他分子的释放增加,在PHN<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">模型中,MAC<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">能活化氧自由基,也能诱导产生特异性蛋白酶象胶原酶、金属蛋白酶9<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">、磷酯酶A2<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">增加,TGF<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">β上调,在HN<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">中可测到产生过量的ROS<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">,而且事先应用ROS<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">清除剂可防止足突消失和蛋白尿的产生,而在人的活检标本中发现在足细胞中存在着氧化修饰蛋白,在膜性肾病足细胞不仅是ROS<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">的作用靶点,也是可以生成ROS<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">,在HN<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">蛋白尿是由抗体诱导补体C5b-9<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">膜攻击复合物形成所致,已经阐明溶解型C5b-9<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">攻击足细胞导致NADPH<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">氧化还原酶复合物表达上调,并转位于足细胞表面,然后ROS<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">在局部产生,并到达基底膜基质,ROS<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">引发脂质超氧化反应,随后降解基底膜胶原IV<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">,导致蛋白尿。[5]

<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">足细胞对损伤的反应是由于特异信号途径的活化,Cybuls ky<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">等近年研究显示在HN<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">大鼠中,在肾小球中由C5b-9<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">引起细胞浆磷脂酶A2<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">增加,这种增加反过来释放更多的花生  <span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">烯酸前产物,它们在合成二十烷类产物、前列腺素、血栓素和白三烯起重要作用,所有这些物质均与GBM<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">的损伤有关[6]<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">,Lemitex<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">等研究发生PGE2<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">的剂显依赖方式减少佛波酯介导的花生四烯酸的释放,而PGE2<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">抑制佛波酯刺激AA<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">释放是CAMP/PKA<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">依赖性的而在老鼠足细胞中PMA<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">刺激PGE2<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">合成需要最基本活性的COX-1<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">和诱导COX-2<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">表达,而PGE2<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">产物的增加与膜性肾病的进展相关。[7]

Mudge.SJ<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">等用NF-KB<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">抑制剂CPDTC<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">处理PHN<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">模型动物,可减少NF-KB<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">结合活性和白蛋白尿提示在PHN NF-KB<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">的结合活性增强,并且PDTC<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">处理可降低基质蛋白酶9 mRNA<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">表达。因此,NF-KB<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">活性似乎与PHN<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">发生的蛋白尿相关,并可能调控着足细胞损伤的有关基因。[8]

C5b-9<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">上调基质金属蛋白酶9<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">和生长因子象TGF-<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">β2<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">、β3<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">和他们的受体TGF<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">β受体I<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">和II<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">型已经在PHN<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">的足细胞上探测到,上调基质金属蛋白酶9<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">和TGF<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">β在破坏超滤屏障和产生过量基质起重要作用。

<span style="line-height: 150%; font-family: 黑体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">二、足细胞对免疫介导损伤的保护机制

1<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">.有三种主要的细胞相关补体调节剂表达在老鼠的肾脏足细胞,它们的功能是保护肾脏免受autologous<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">补体介导的损伤,这些调节剂是补体受体相关蛋白-Y<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">(Crry<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">)溶解反应的膜抑制剂(CD59<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">)衰变加速因素,补体调控蛋白在限制足细胞上补体活化非常重要。Crry<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">和CD59<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">是补体系统的调节剂并抑制C3<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">转换酶和C5b-9<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">的聚集,在体外实验已证明通过足细胞表达Crry<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">和CD59<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">可保护足细胞免受补体介导的损伤。

DAF<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">能抑制补体C3<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">和C5<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">转化酶的活化,DAF<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">在人肾和培养的人类足细胞上存在。Baol<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">研究发现DAF<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">仅出现在足细胞的表面的顶部,而足细胞的基底表面没有,其他肾脏细胞也没有。DAF<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">在培养的足细胞功能活跃,它与CD59<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">联系抑制补体的活化。在正常情况下它不是防止补体活化发生所必需的,然而在蛋白尿的情况下,DAF<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">看来对足细胞有保护作用[9]<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">。

2<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">.最近研究表明:补体活化体外培养的足细胞和PHN<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">大鼠肾小球足细胞的P38MARK<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">,活化的P38MAPK<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">好像对补体介导的足细胞损伤有保护作用,HSP27<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">磷酸化可以介导这种细胞保护作用,他研究发现,在用补体刺激培养的大鼠足细胞时,P38<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">激酶活性和磷酸化增加。用P38<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">抑制剂处理可显著提高补体介导的细胞毒作用,相反,当一种P38<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">上游的激酶转化生长因子β活化激酶1<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">(TAK1<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">),的基本活性的改变在足细胞上以一种可诱变的方式表达,与没有诱变的细胞相比细胞毒性显著减少。

P38<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">抑制剂使TAK1<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">表达的保护作用丧失,在PHN<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">大鼠的肾小球足细胞上的P38<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">活性也是增加的,并且用P38<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">抑制剂(FR-167653<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">)使蛋白尿增加。补体诱导MAPK<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">相关蛋白的激酶2<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">(MAPKAPK-2<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">)一种足细胞P38<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">的下游激酶,磷酸化。热休克蛋白(HSP27<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">)是MAPKAPK-2<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">的一种细胞骨架相互作用的底物,过度表达野生型的HSP27<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">,显著减少补体介导的足细胞损伤。[10]

3<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">.抑制环氧化酶减少补体诱发PHN<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">的足细胞损伤和蛋白尿。他们研究发现,用非选择性COX<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">抑制剂和COX-2<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">选择性抑制剂处理表现为明显蛋白尿的PHN<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">大鼠,结果发现,在实验膜性肾病,选择性抑制COX-2<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">减少蛋白尿,没有影响肾功能的不利作用,然而,抑制COX-1<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">和-2<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">可获得最大的细胞保护作用和抗蛋白尿作用[11]

4<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">.还有研究表明大鼠足细胞表面产生H<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">因子,在补体攻击时H<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">因子的表达上调,H<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">因子是一种有效的补体抑制因子,它主要由肝脏产生并在血浆中表现为可溶性蛋白,作者用一种H<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">因子多克隆抗体来识别H<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">因子蛋白,通过逆转录PCR<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">定量测定暴露于补体激活物的培养的足细胞和PHN<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">大鼠足细胞的H<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">因子mRNA<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">的相对量,结果发现在培养的足细胞和肾小球足细胞均表达H<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">因子mRNA<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">和蛋白,在活体PHN<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">模型或离体的大鼠的足细胞,H<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">因子均上调,这看来是足细胞对补体攻击的直接反应,并且可能存在着一种细胞保护性反应[12]

5<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">.血管内皮生长因子(VEGF<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">)是一种有效的血管生长因子,在正常的肾脏主要由足细胞产生,VEGF<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">在维持由皮细胞的整体性,抑制早期由皮损伤的加速肾小球毛细血管   <span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">的重塑十分重要,膜性肾病时,尿中VEGF<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">分泌下降,HonKanenE<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">等对20<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">例临床活动和   <span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">进展期的MGN<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">患者进行尿分析VEGF<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">和可溶性VEGF<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">受体进行研究,结果发现临床活动性MGN<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">与足细胞上VEGF<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">虽有表达和mRNA<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">表达降低相关,并且在疾病持续活动或进展时表达仍被抑制。这通过尿分泌VEGF<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">减少反映,这些发现提示,VEGF<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">在MGN<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">的进展中可起保护作用[13]

<span style="line-height: 150%; font-family: 黑体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">三、PHN<span style="line-height: 150%; font-family: 黑体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">足细胞周期蛋白的调控反应

Shankland<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">等表明在HN<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">模型时足细胞对免疫介导的损伤的反应是上调CyclinA<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">和CDK2<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">。然而,平行诱导产物CKI P21<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">和P27<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">能有效地阻止其进入细胞周期的下一步,有研究大鼠足细胞对可溶性补体浓度的反应,在膜性肾病模型的体外试验,显示足细胞对C5b-9<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">的反应是生长因子诱导DNA<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">合成增加。C5b-9<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">导致S<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">期cyclinA<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">和CDK2<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">增加和CKI P27<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">减少而P21<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">不减少,而且,M<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">期蛋白CylinB<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">和cdc2<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">重表达,这种细胞周期导致细胞DNA<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">内容增加,而没有细胞增殖,进一步证实在活体观察足细胞停留在G2/m<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roman";">期。

Shankland<span style="line-height: 150%; font-family: 宋体; font-size: 12pt; mso-ascii-font-family: "Times New Roman"; mso-hansi-font-family: "Times New Roma

亲,我能为你提供的服务!120健康网担保,医生服务不满意请投诉并全额退款于您。
指定咨询


购买后,您可以:
随时向我在线咨询1次

99.00元/次 点击查看>
健康顾问

签约健康顾问后,您可以:
1、随时向我咨询,不限次数
2、可以向我电话咨询
3、获得我的回访

暂未开通
最新服务评价